炒菜油烟会引起肺癌?华西专家说,确实有可能!但做好这六点就不慌!

四川大学华西医院 医牛健康资讯网综合整理 2023-04-20 炒菜油烟|肺癌 (2299)

“医生,我看最近某音上的小视频说,炒菜油烟要引起肺癌啊?得不得是豁人的哦!”

答:煎、炒、炸、烤这些做菜的方式温度高、油烟大,烹饪过程中会产生一些有害成分,长时间吸入后对身体的确有影响,有可能增加患肺癌、慢阻肺等呼吸道疾病的风险。

“好吓人!四川人90%的菜都是靠炒,未必就听天由命了啊?”

答:当然不是!做好这六点就不用慌!

接下来,四川大学华西医院呼吸病学研究室陈俊副研究员带着华西临床医学院的同学们来告诉大家,油烟究竟对身体有哪些影响,从哪些小习惯入手可以减少这些影响。

一、炒、炸、烤的确会产生一些有害物质

烹饪油烟就是做饭时用食用油煎、炒、炸、烤食物后,发生剧烈化学变化而产生的油烟雾,大家不要小看了这些烟烟,它不止是有点呛人。根据目前研究来看,油烟里含多种有毒化学成分,其中主要包括这三类:

1. 颗粒物(PM)

PM这个东西大家应该不陌生了,别名可入肺颗粒物,英文全称为particulate matter(颗粒物)。如科学家用PM2.5表示每立方米空气中这种颗粒的含量,这个值越高,就代表空气污染越严重。

其实很多人不清楚,在煎、炒、炸、烤的烹饪过程中,油烟中颗粒物也相当不少,不仅会产生PM2.5,还有PM10。有研究表明,烹饪活动形成的颗粒物一般直径小于10微米,浓度峰值出现在PM2.5附近,处于人体可吸入范围内,并且能在空气中悬浮停留较长时间。

2. 有机或气态污染物

主要包括多环芳香族化合物型、黄酮型、脂肪烃族、酮类、杂环类化合物型等共220余种物质,其中有一些明确的致癌物如苯并芘、多环芳烃等。

另外,在色拉油炒猪肉所产生的油烟萃取物,发现硝基多环芳香精,是已知的强致癌物。动物实验显示,菜籽油、豆油加热到270℃至280℃时产生的油雾凝聚物,可以导致细胞染色体损伤,这被认为和癌症的发生有关。

3. 醛酮类化合物

油烟中的一些醛酮类化合物,具有较高的反应活性,是臭氧(O₃)及二次有机气溶胶等强氧化性污染物生成的重要前体物,也具有致癌、致畸和致突变的作用。 

二、油烟跟肺癌的确有关系

抽烟会引起肺癌已经是铁铮铮的事实,但炒菜油烟是不是会引起肺癌,可能有不少人还想打个问号。但无论咋个说,目前已经有很多相关的科学研究,都明确表示油烟跟肺癌的发生有关系——油烟中的有害物质通过刺激肺部细胞发生炎症反应、导致细胞DNA损伤并阻碍其修复等机制诱导肺癌。

如果说上面这一段字大家看不懂,没得关系哈,理论基础先kuo到这儿,下面的内容保准大家懂得起。

一抹多的研究发现,在不吸烟女性发生肺癌的人群中,肺癌的发生除了与被动吸烟有关外,厨房油烟是很重要的风险因素之一。当然这种风险肯定也是跟日常接触油烟的“质”和“量”相关的,也就是说接触油烟的有害物质种类越多,量越大,那么患肺癌的风险就越大。

至于油烟中的有害物质影响有多大?下面举两个例子大家就能懂得起了。

以油烟中的多环芳烃举例

它是一种明确的致癌物。香烟燃烧时也含有多环芳烃,研究表明,烹饪过程油烟中的多环芳烃浓度,相当于在1间通风不畅的办公室里,持续6个小时点了96支烟。

虽然油烟中的多环芳烃毒性不如直接燃烧的香烟,但由于其易溶解在液滴中并随着液滴吸入人的呼吸系统而使致癌风险增加,这也是吸烟比例不高的家庭主妇,患肺癌的增幅却远高于男性的原因之一。此外,油烟中的多环芳烃还会引发如子宫颈肿瘤等妇科疾病。

再举个大家都熟悉的PM2.5

刚才说了在爆炒、煎、炸下的PM2.5会迅速升高,我们自己做了个实验,证明的确如此——

还没开始做饭时,开放式厨房的PM2.5值最高为18,把菜倒下油锅的炒菜过程中,PM2.5最高飙升到999,高出了55倍。

PM2.5由于颗粒很小,很容易渗入肺部,会增加呼吸系统疾病和心血管疾病的发病率。

“医生,但还是有很多做了一辈子饭的人,甚至天天炒菜的厨师,也没有得肺癌噻?”

答:这个其实就跟也是为啥子有些人天天抽烟还没遭肺癌,不抽烟的人反而遭肺癌一回事。疾病的发生本来就是综合了遗传、环境等各方面的原因才会出现的,油烟只是诱发肺癌风险的因素之一,但并不是说接触油烟的人100%会得肺癌。

三、除了肺癌油烟还可能引起慢阻肺

虽然大家最关注的就是油烟和肺癌之间的关系,但你们不晓得,油烟还可能引起慢阻肺!

慢阻肺的全称是慢性阻塞肺病,如果说这个名字大家不熟悉的话,那“老慢支”“肺气肿”你们肯定听过,它们都属于慢阻肺的范畴,会出现长期、反复、逐渐加重的咳嗽、咳痰,气短、呼吸困难,喘息和胸闷。

根据2018年「中国成人肺部健康研究」研究结果显示,60岁以上老人中,每4人就有1位是慢阻肺的患者。

长期接触、暴露于有毒、有害气体或漂浮颗粒是导致慢阻肺的主要风险因素。油烟中存在的有害气体和颗粒会刺激气道分泌黏液,并造成小气道反复损伤修复发生纤维化,诱发气道重塑,出现气流受限的症状。大量聚集的炎症细胞释放蛋白酶和蛋白酶抑制剂,造成蛋白酶-抗蛋白酶失衡、破坏肺泡结构,造成气体潴留,从而形成肺气肿。此外,室内空气中PM2.5、PM10水平的升高跟慢阻肺的发生也有关系。

四、这3个日常习惯让油烟伤害加倍

在国人的生活习惯中,无论什么菜系,煎、炒的烹饪方法仍然是主流,油烟的产生也无法完全避免,但下面这些日常坏习惯,会让油烟产生更多,对身体的伤害加倍!

错误习惯1. 油要冒烟了才放菜

锅里的油一定要熬到冒烟了才把菜放进去,这样炒出来的菜才好吃,这是很多掌勺师傅的经验,但是,华西专家要在这里告诉大家,等到油冒烟了再放菜,是错误的!

首先,油温高了之后放菜,油烟会短时间内增多,相应的有害物质如PM2.5也会增多;

其次,油温过高后,油中会产生苯、丙烯醛等可能致癌物,尤其有些人屋头用的还是反复使用的油(比如头顿的回锅肉汤汤),那么产生的不良物质可能更多;

第三, 倒回三四十年,那时多数使用的是粗榨油,需要熬一下才能去除杂质,冒烟的点也比较低,所以熬一下刚冒烟就正合适。但现在不一样了,目前多数都使用的是精炼食用油,里面莫得啥子杂质,等到熬了冒烟了,油温就已经很高了,可能致癌物也就产生了。

正确的做法是:先把锅烧热了再倒油,稍微熬一下就可以下菜,千万不要等冒烟再放菜,更不要反复使用熬过的油。

错误习惯2. 炒完菜就立马关抽油烟机

想问问大家,在菜炒好后,你们是不是第一个动作是关火,接着就是关抽油烟机?但华西专家要说,炒完菜立马就关抽油烟机的做法是错的!

正确的做法是:爆炒之后厨房内的油烟是比较重的,它并不会因为你立马关火就散去了,这时还应该继续让抽油烟机再工作个三到五分钟,帮助把厨房中的油烟浓度降低。 

错误习惯3. 厨房常年窗户紧闭

有些老辈子习惯把厨房的窗户一天到黑关起,他们认为如果开了窗户通了风,抽油烟机吸油烟的效果就不好了。但老辈子些啊,这个习惯也是错的!

你们想哈嘛,厨房的面积还是有那么大,光靠抽油烟机也不够噻,尤其在夏天潮湿闷热的环境中,还容易引发“中暑”。

正确的做法是:做饭炒菜时不仅要开抽油烟机,还要开窗通风,让空气产生对流。 

五、做好这六点减少油烟的伤害

1. 做菜时尽量少用油炸、煎炒、爆炒等方式,避免长时间的烹饪操作;

2. 注意厨房通风;

3. 在挑选油烟机时优先选择尺寸大而且风压强劲的;

4. 抽油烟机要早开晚关。在烹调全过程中都开着抽油烟机,完成烹调后等待三至五分钟再关闭,以便更有效排出厨房油烟;

5. 定期清洗抽油烟机;

6. 可在厨房内增加一些绿色植物,吸附抽油烟机遗漏掉的厨房油烟颗粒。

六、戴口罩戴对了才能减少油烟伤害

“医生,那做饭炒菜时戴口罩能不能减少油烟的吸入呢?”

答:戴口罩也是减少油烟伤害的一种有效办法,但前提是得戴对口罩才行。

这三年在新冠病毒的影响下,大家可能储存得最多的就是一次性普通口罩、一次性医用口罩、一次性医用外科口罩,但在对待油烟时这些口罩就不能发挥理想的作用了。

“那N95口罩喃?防护效果那么好,肯定有用哇?”

答:想多了,KN95(中国标准)和N95(美国标准)是针对空气中的非油性颗粒,比如病毒、细菌、灰尘、花粉,过滤效率达95%以上,但针对油性颗粒,过滤效果并不好。

在厨房的场景中,建议大家(尤其是厨师)可以合理、适度使用KP95(中国标准)和P95(美国标准)的口罩,针对空气中的油性颗粒如油烟、油雾,过滤效率达95%以上。至于KP90、KP100口罩,也可以用哈,只是过滤效率不同。

本文作者:德庆曲珍、刘雅文、何嘉慧、德庆曲珍

指导老师:陈俊

参考文献:

1. IEA, IRENA, UNSD, World Bank, WHO. 2022. Tracking SDG 7: The Energy Progress Report. World Bank, Washington DC. © World Bank. License: Creative Commons Attribution—NonCommercial 3.0 IGO (CC BY-NC 3.0 IGO). Available from: https://trackingsdg7.esmap.org/downloads. 2022.

2. Gordon SB, Bruce NG, Grigg J, et al. Respiratory risks from household air pollution in low and middle income countries. Lancet Respir Med 2014; 2(10): 823-60.

3. Balakrishnan K GS, Ganguli B, Sambandam S, Bruce N, Barnes DF, et al. State and national household concentrations of PM2.5 from solid cookfuel use: re- sults from measurements and modeling in India for estimation of the global burden of disease. Environ Health 2013;12:77. Environ Health 2013.

4. Balakrishnan K, Ghosh S, Ganguli B, et al. State and national household concentrations of PM2.5 from solid cookfuel use: results from measurements and modeling in India for estimation of the global burden of disease. Environ Health 2013; 12(1): 77.

5. 赵紫微. 烹饪油烟颗粒物组分的排放特征研究 [硕士]: 大连工业大学; 2019.

6. Chang SS, Peterson RJ, Ho CT. Chemical reactions involved in the deep-fat frying of foods. J Am Oil Chem Soc 1978; 55(10): 718-27.

7. Susaya J, Kim KH, Ahn JW, Jung MC, Kang CH. BBQ charcoal combustion as an important source of trace metal exposure to humans. J Hazard Mater 2010; 176(1-3): 932-7.

8. Doig A, Warwick H. Smoke - the Killer in the Kitchen: Indoor Air Pollution in Developing Countries. 2004; 2004.

9. Zhao J, Su F, Zhou S. [Experimental study on the potential carcinogenicity of cooking oil fume condensate]. Wei Sheng Yan Jiu 2002; 31(1): 21-3.

10. 陈华 叶. 烹调油烟对人体健康的影响. 上海环境科学 1991(8):48-48,29.

11. Vainiotalo S, Matveinen K. COOKING FUMES AS A HYGIENIC PROBLEM IN THE FOOD AND CATERING INDUSTRIES. American Industrial Hygiene Association Journal 1993; 54(7): 376-82.

12. D。LSPDW. 食用油烟雾中的多环芳烃分析。. Arch Environ Health 1994;49:119-22。1994.

13. YC CTP-FWYLWLK. 台湾生产的加热食用油中烟雾的诱变性和芳香胺含量。Food Chem Toxicol 1999;37:125-34。. 1999.

14. YC WPCTWLCCK. 加热食用油中烟雾的硝基多环芳烃含量和儿茶素的诱变性预防。Mutat Res 1998;403:29-34。. 1998.

15. Lund KH, Petersen JH. Migration of formaldehyde and melamine monomers from kitchen- and tableware made of melamine plastic. Food Addit Contam 2006; 23(9): 948-55.

16. 汪笃权, 左晓斌, 李小玲, 杨志军, 李艳君, 龙媛梅. 饮食油烟检测及成分分析. 现代农业科技 2010; (09): 284-5.

17. 叶琳. 烹调油烟对健康危害的研究进展. 中国公共卫生 2003.

18. 胡敏,张健. .饮食业油烟气快速检测——检气管法[J], 22(11):840-843. 上海环境科学 2003.

19. 赵金明, 宿飞, 周少琴. 烹调油油烟的潜在致癌性实验研究. 卫生研究 2002; (01): 21-3.

20. Delfino RJ. Epidemiologic evidence for asthma and exposure to air toxics: linkages between occupational, indoor, and community air pollution research. Environ Health Perspect 2002; 110 Suppl 4(Suppl 4): 573-89.

21. Lee T, Gany F. Cooking oil fumes and lung cancer: a review of the literature in the context of the U.S. population. J Immigr Minor Health 2013; 15(3): 646-52.

22. 张宝勇, 周才琼. 烹调油烟的组成与危害及防治措施. 中国油脂 2006; (07): 44-7.

23. Venkatesan P. GOLD COPD report: 2023 update. Lancet Respir Med 2022.

24. Eisner MD, Anthonisen N, Coultas D, et al. An official American Thoracic Society public policy statement: Novel risk factors and the global burden of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010; 182(5): 693-718.

25. Salvi SS, Barnes PJ. Chronic obstructive pulmonary disease in non-smokers. Lancet 2009; 374(9691): 733-43.

26. Orozco-Levi M, Garcia-Aymerich J, Villar J, Ramírez-Sarmiento A, Antó JM, Gea J. Wood smoke exposure and risk of chronic obstructive pulmonary disease. Eur Respir J 2006; 27(3): 542-6.

27. Sana A, Somda SMA, Meda N, Bouland C. Chronic obstructive pulmonary disease associated with biomass fuel use in women: a systematic review and meta-analysis. BMJ Open Respir Res 2018; 5(1): e000246.

28. Ezzati M. Indoor air pollution and health in developing countries. Lancet 2005; 366(9480): 104-6.

29. Zhou Y, Zou Y, Li X, et al. Lung function and incidence of chronic obstructive pulmonary disease after improved cooking fuels and kitchen ventilation: a 9-year prospective cohort study. PLoS Med 2014; 11(3): e1001621.

30. Mannino DM, Buist AS. Global burden of COPD: risk factors, prevalence, and future trends. Lancet 2007; 370(9589): 765-73.

31. Gut-Gobert C, Cavaillès A, Dixmier A, et al. Women and COPD: do we need more evidence? Eur Respir Rev 2019; 28(151).

32. Tan WC, Sin DD, Bourbeau J, et al. Characteristics of COPD in never-smokers and ever-smokers in the general population: results from the CanCOLD study. Thorax 2015; 70(9): 822-9.

33. Caballero A, Torres-Duque CA, Jaramillo C, et al. Prevalence of COPD in five Colombian cities situated at low, medium, and high altitude (PREPOCOL study). Chest 2008; 133(2): 343-9.

34. Liu S, Zhou Y, Wang X, et al. Biomass fuels are the probable risk factor for chronic obstructive pulmonary disease in rural South China. Thorax 2007; 62(10): 889-97.

35. Raju S, Keet CA, Paulin LM, et al. Rural Residence and Poverty Are Independent Risk Factors for Chronic Obstructive Pulmonary Disease in the United States. Am J Respir Crit Care Med 2019; 199(8): 961-9.

36. Awji EG, Chand H, Bruse S, et al. Wood smoke enhances cigarette smoke-induced inflammation by inducing the aryl hydrocarbon receptor repressor in airway epithelial cells. Am J Respir Cell Mol Biol 2015; 52(3): 377-86.

37. Kurmi OP, Dunster C, Ayres JG, Kelly FJ. Oxidative potential of smoke from burning wood and mixed biomass fuels. Free Radic Res 2013; 47(10): 829-35.

38. Andualem Z, Nigussie Azene Z, Dessie A, Dagne H, Dagnew B. Acute respiratory infections among under-five children from households using biomass fuel in Ethiopia: systematic review and meta-analysis. Multidiscip Respir Med 2020; 15(1): 710.

39. Matheson MC, Benke G, Raven J, et al. Biological dust exposure in the workplace is a risk factor for chronic obstructive pulmonary disease. Thorax 2005; 60(8): 645-51.

40. Wang C, Xu J, Yang L, et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): a national cross-sectional study. Lancet 2018; 391(10131): 1706-17.

41. Mulliez T, Barbé K, de Ridder M. Estimating lung cancer and cardiovascular mortality in female breast cancer patients receiving radiotherapy. Radiother Oncol 2020; 152: 111-6.

42. Shah N, Liu Z, Tallman RM, et al. Drug resistance occurred in a newly characterized preclinical model of lung cancer brain metastasis. BMC Cancer 2020; 20(1): 292.

43. Vermeulen R, Downward GS, Zhang J, et al. Constituents of Household Air Pollution and Risk of Lung Cancer among Never-Smoking Women in Xuanwei and Fuyuan, China. Environ Health Perspect 2019; 127(9): 97001.

44. 韩仁强, 郑荣寿, 张思维, 武鸣, 陈万青. 1989年-2008年中国肺癌发病性别、城乡差异及平均年龄趋势分析. 中国肺癌杂志 2013; 16(09): 445-51.

45. 王丽君, 宇传华, 张志将, 燕虹. 中国居民1987—2014年肺癌死亡趋势分析. 中国公共卫生 2017; 33(01): 42-6.

46. 项丹平. 中国女性肺癌发病率高于西方厨房油烟和二手烟是最大祸首.  2013-06-17;Sect. B01.

47. Kim C, Gao YT, Xiang YB, et al. Home kitchen ventilation, cooking fuels, and lung cancer risk in a prospective cohort of never smoking women in Shanghai, China. Int J Cancer 2015; 136(3): 632-8.

48. Yu IT, Chiu YL, Au JS, Wong TW, Tang JL. Dose-response relationship between cooking fumes exposures and lung cancer among Chinese nonsmoking women. Cancer Res 2006; 66(9): 4961-7.

49. Metayer C, Wang Z, Kleinerman RA, et al. Cooking oil fumes and risk of lung cancer in women in rural Gansu, China. Lung Cancer 2002; 35(2): 111-7.

50. Wang XR, Chiu YL, Qiu H, Au JS, Yu IT. The roles of smoking and cooking emissions in lung cancer risk among Chinese women in Hong Kong. Ann Oncol 2009; 20(4): 746-51.

51. Yin Z, Cui Z, Guan P, et al. Interaction between Polymorphisms in Pre-MiRNA Genes and Cooking Oil Fume Exposure on the Risk of Lung Cancer in Chinese Non-Smoking Female Population. PLoS One 2015; 10(6): e0128572.

52. Ren Y, Yin Z, Li K, et al. TGFβ-1 and TGFBR2 polymorphisms, cooking oil fume exposure and risk of lung adenocarcinoma in Chinese nonsmoking females: a case control study. BMC Med Genet 2015; 16: 22.

53. Phukan RK, Saikia BJ, Borah PK, Zomawia E, Sekhon GS, Mahanta J. Role of household exposure, dietary habits and glutathione S-Transferases M1, T1 polymorphisms in susceptibility to lung cancer among women in Mizoram India. Asian Pac J Cancer Prev 2014; 15(7): 3253-60.

54. Li M, Yin Z, Guan P, et al. XRCC1 polymorphisms, cooking oil fume and lung cancer in Chinese women nonsmokers. Lung Cancer 2008; 62(2): 145-51.

55. Household use of solid fuels and high-temperature frying. IARC Monogr Eval Carcinog Risks Hum 2010; 95: 1-430.

56. Kurmi OP, Arya PH, Lam KB, Sorahan T, Ayres JG. Lung cancer risk and solid fuel smoke exposure: a systematic review and meta-analysis. Eur Respir J 2012; 40(5): 1228-37.

57. Zhao Y, Wang S, Aunan K, Seip HM, Hao J. Air pollution and lung cancer risks in China--a meta-analysis. Sci Total Environ 2006; 366(2-3): 500-13.

58. Capistrano SJ, van Reyk D, Chen H, Oliver BG. Evidence of Biomass Smoke Exposure as a Causative Factor for the Development of COPD. Toxics 2017; 5(4).

59. Rivera RM, Cosio MG, Ghezzo H, Salazar M, Pérez-Padilla R. Comparison of lung morphology in COPD secondary to cigarette and biomass smoke. Int J Tuberc Lung Dis 2008; 12(8): 972-7.

60. Kim YJ, Jung CY, Shin HW, Lee BK. Biomass smoke induced bronchial anthracofibrosis: presenting features and clinical course. Respir Med 2009; 103(5): 757-65.

61. Mohammed MO, Song WW, Ma WL, et al. Potential Toxicological and Cardiopulmonary Effects of PM2.5 Exposure and Related Mortality: Findings of Recent Studies Published during 2003-2013. Biomed Environ Sci 2016; 29(1): 66-79.

62. Liu Y, Chen YY, Cao JY, et al. Oxidative stress, apoptosis, and cell cycle arrest are induced in primary fetal alveolar type II epithelial cells exposed to fine particulate matter from cooking oil fumes. Environ Sci Pollut Res Int 2015; 22(13): 9728-41.

63. Josyula S, Lin J, Xue X, et al. Household air pollution and cancers other than lung: a meta-analysis. Environ Health 2015; 14: 24.

64. Wu SC, Yen GC. Effects of cooking oil fumes on the genotoxicity and oxidative stress in human lung carcinoma (A-549) cells. Toxicol In Vitro 2004; 18(5): 571-80.

65. Cao J, Ding R, Wang Y, et al. Toxic effect of cooking oil fumes in primary fetal pulmonary type II-like epithelial cells. Environ Toxicol Pharmacol 2013; 36(2): 320-31.

66. Che Z, Liu Y, Chen Y, et al. The apoptotic pathways effect of fine particulate from cooking oil fumes in primary fetal alveolar type II epithelial cells. Mutat Res Genet Toxicol Environ Mutagen 2014; 761: 35-43.

67. Wu M, Che W, Zhang Z. Enhanced sensitivity to DNA damage induced by cooking oil fumes in human OGG1 deficient cells. Environ Mol Mutagen 2008; 49(4): 265-75.

68. Mi H-H, Liao W-T, Chang H-C, Chen S-J, Lin C-C, Hsieh L-T. Optical Emission Spectroscopy in Cooking Exhaust from a Wet Scrubber/Atmospheric Plasma Reactor. Aerosol and Air Quality Research 2014; 14(6): 1665-74.

69. Xue X, Yin Z, Lu Y, et al. The joint effect of hOGG1, APE1, and ADPRT polymorphisms and cooking oil fumes on the risk of lung adenocarcinoma in Chinese non-smoking females. PLoS One 2013; 8(8): e71157.

70. Pan CH, Chan CC, Wu KY. Effects on Chinese restaurant workers of exposure to cooking oil fumes: a cautionary note on urinary 8-hydroxy-2'-deoxyguanosine. Cancer Epidemiol Biomarkers Prev 2008; 17(12): 3351-7.

71. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell 2003; 115(7): 787-98.

72. Petermann E, Keil C, Oei SL. Roles of DNA ligase III and XRCC1 in regulating the switch between short patch and long patch BER. DNA Repair (Amst) 2006; 5(5): 544-55.

73. Puthumana JS, Ngaage LM, Borrelli MR, Rada EM, Caffrey J, Rasko Y. Risk factors for cooking-related burn injuries in children, WHO Global Burn Registry. Bull World Health Organ 2021; 99(6): 439-45.

74. Bonjour S, Adair-Rohani H, Wolf J, et al. Solid fuel use for household cooking: country and regional estimates for 1980-2010. Environ Health Perspect 2013; 121(7): 784-90.

75. 田成璇. 慢性阻塞性肺疾病男女性别差异的相关因素探讨 [硕士]: 宁夏医科大学; 2018.

76. 耿兴敏. 减少厨房油烟,守住“烹饪呼吸安全线”.  2022-08-24;Sect. 008.

77.禹蒙. 中式烹饪厨房细颗粒物散发特性及人员健康风险评估[D].沈阳建筑大 学,2020.DOI:10.27809/d.cnki.gsjgc.2020.000253.

77.K. Siegmann, K. Sattler, Aerosol from hot cooking oil, a possible health hazard, Journal of Aerosol Science, Volume 27, Supplement 1, 1996, Pages S493-S494.

循证来源:医牛独家循证原文(点击获取链接)